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1. Research objectives  
 
To develop and demonstrate a technique for multi-objective optimization of the chemical composition of 
an alloy with the use of an existing database. 
  
2. Brief description of technique 
 
2.1. General information 
The technique for optimization of the composition of an alloy by a number of criteria consists in the 
organization and execution of an iteration optimization experiment, which results in a set of Pareto 
optimum compositions of steel. The technique is based on the use of algorithms of response surface 
building known as IOSO. The response surfaces are built in accordance with existing experimental 
information. In a set of experiments the information on alloy properties in Pareto set neighborhood is 
accumulated, which makes it possible to increase the accuracy of results obtained. At each iteration of this 
technique a set of alloy compositions is formed, which are assumed to be Pareto optimal, and for which 
an experiment should be carried out. 
 
During this work, algorithms of artificial neural networks (ANN) were used that utilized radial-basis 
functions modified in order to build the response surfaces. The modifications consisted in the selection of 
ANN parameters at the stage of their training that are based on two criteria: minimal curvature of 
response surface, and provision of the best predictive properties for given subset of test points 

inibest WW ∈ . Each iteration of alloy composition multi-objective optimization technique involves the 
following steps: 
1. Building and training ANN1 for a given set of test points proceeding from the requirement 

inibest WW = . 
2. Conducting multi-objective optimization with the use of ANN1 and obtaining a specified number of 

Pareto optimal solutions P1.  
3. Determining a subset of test points Wbest that are maximally close to points P1 in the space of variable 

parameters.  
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4. Training ANN2 proceeding from the requirement to provide the best predictive properties for 
obtained subset of test points inibest WW ∈ .  

5. Conducting multi-objective optimization with the use of ANN2 and obtaining a set of Patero-optimal 
solutions P2. 

 
2.2. Features of technique in the presence of an experimental database 
In general, the database contains information on experimentally obtained alloy properties compiled from 
different sources and obtained under different experimental conditions. As a result, for alloys with the 
same chemical compositions, there can be considerable differences of measured properties. These 
differences can be explained as errors due to the particular conditions existing during the experiments 
(measurement errors), and by the effect of certain operating conditions (for example, thermal condition of 
alloy making). Unless operating conditions are quantified numerically, their influence is regarded as an 
additional chance factor. In its simplified form the methodology can be presented as the following set of 
actions:  
 
1. Formulation of optimization task, that is, selection of variable parameters, definition of optimization 

objectives and constraints, and setting initial (preliminary) ranges of variable parameters variations.   
2. Preliminary reduction of the experimental database. At this stage the points meeting optimization task 

statement are picked up from the database so that alloys having chemical composition outside the 
chosen set of variable parameters are rejected. Alloys for which there is no data for at least one 
optimization objective are rejected. In addition, alloys with chemical compositions outside the set 
range of variable parameters are also rejected.  

3. Final reduction of the experimental database. Since accuracy of the building of response surfaces 
substantially depends on uniformity of distribution of variable parameters in the surveyed area, 
rejection of experimental data points falling outside of the universal set is performed. At the end of 
this stage, a final range of variable parameters for optimization is set. 

4. Execution of multi-objective optimization resulting in a specified number of Pareto optimal solutions.  
5. Analysis of optimization results. 
6. Carrying out an experiment to obtain a set of Pareto optimal alloy compositions (or a certain subset) 

and analysis of the results obtained.  
7. Change of optimization problem statement (number of simultaneous objectives and constraints, the 

set and range of variable parameters), and returning to step 2. 
8. Modification of database and returning to step 4. 
9. Stop 
 
3. Initial (universal) experimental database  
 
For this particular case, the initial data represented a database containing information on 201 
experimentally tested alloys. The data are contained in the file ini_data.xls. A preliminary analysis of 
data has shown that for certain alloys there is no complete information on alloy chemical composition. 
Such alloys were excluded from further analysis. Besides, some chemical elements (V, Bi, Se, Zr, Sb, Cd 
) were present in a very small number of alloys, which makes it impossible to assess their effect 
proceeding from information in this database. Such alloys were also excluded from further analysis. The 
remaining database had 176 alloys (file first.xls). 
At the next stage, an evaluation of uniformity of distribution of the percentage values of different 
elements in the existing range was made. It turned out that certain alloys had percentages differing very 
strongly from the universal set. As an example Fig.1 presents distribution of the percentage of sulfur in 
the alloys of the reduced database. The alloy No.67 had percentage of sulfur exceeding average value by 
some 10 times. Such alloys were excluded from further analysis. The capacity of the remaining database 
was 158 alloys (the file second.xls). 
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Fig. 1. Distribution of percentage of sulfur (S) in database alloys. 
 
 
4. Features of optimization problem statement  
 
4.1. Variable parameters 
In this problem the percentages of the following 17 elements were taken as independent variables:  
C, S, P, Cr, Ni, Mn, Si, Cu, Mo, Pb, Co, Cb, W, Sn, Al, Zn, Ti.  
The ranges of these elements were set as follows. First, minimum and maximum values for existing set of 
experimental data ( 17,1i  ,max_Exp ,min_Exp ii = ) were defined. Then, new minimum and 
maximum values for each of the 17 elements were obtained according to the following simple 
dependencies: ( 17,1i  ,max_Exp1.1Max ,min_Exp9.0Min iiii =⋅=⋅= ). The existing ranges are 
given in Table 1.  
 

Table 1. Ranges of variation of independent variables 
   C   S   P   Cr   Ni   Mn   Si   Cu   Mo  

min 0.063 0.001 0.009 17.500 19.300 0.585 0.074 0.016 0.000 
max 0.539 0.014 0.031 39.800 51.600 1.670 2.150 0.165 0.132 

          
   Pb   Co   Cb   W   Sn   Al   Zn   Ti   

min 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000  
max 0.006 0.319 1.390 0.484 0.007 0.075 0.015 0.198  

 
4.2. Optimization objectives 
The following parameters were used as optimization objectives: 

•  Stress (PSI – maximize); 
•  Operating temperature (T – maximize); 
•  Time to "survive" until rupture (Hours – maximize). 

Under the research the solution of a three-objectives optimization problem and a series of two-objectives 
problems were accomplished when one of the considered parameters was constrained.   
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5. Obtained results 
 
5.1. Problem No. 1. 
During the first stage, the problem of three-objectives optimization was solved with 100 points of Pareto 
optimal solutions. The results are given in the file task1.xls. Figure 2 presents obtained Pareto optimal 
solutions in objectives’ space (PSI – HOURS). Analysis of this figure allows us to extract an area of 
admissible combinations of different optimization objectives. It can be seen that results are distributed in 
the admissible part of the objectives’ space quite uniformly. Such a distribution offers a possibility for a 
significant improvement of accuracy of response surfaces on condition that the experiments will be 
carried out at the obtained Pareto optimal points. In principle, the first iteration of the process of alloy 
chemical composition optimization by several objectives could be regarded as completed. Then, in 
accordance with the elaborated technique, it is necessary to conduct experiments at the obtained Pareto 
optimal points, evaluate accuracy of prediction of values of partial optimization criteria, and either 
complete the process or perform another iteration.  
 
However, such a strategy seems very difficult to implement for a researcher who knows his tasks more 
accurately. It can be seen that the ranges of variation of optimization objectives for obtained Pareto set are 
very wide. At the same time, if a researcher can formulate the problem more specifically (for example, by 
setting constraints on the objectives) the volume of experimental work can be substantially reduced.  
 
Figure 3 and Figure 4 presents interdependence of the chosen optimization objectives built on the 
obtained set of Pareto optimal solutions. Analysis of these figures shows that the increase of temperature, 
for instance, leads to the decrease of compromise possibilities between PSI and HOURS. Hence, if a 
researcher knows exactly in what temperature range the alloy being designed will be used, it is more 
economical that the problem of two-objectives optimization be solved with additional constraint for the 
third efficiency parameter.  
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Fig.2. Results of Problem No.1 solution in objectives’ space. 
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Fig.3. Time to rupture vs. strength interdependence of optimization objectives for Pareto set. 
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Fig.4. Temperature vs. strength iterdependence of optimization objectives for Pareto set. 
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Fig. 5. Larsen-Mueller diagram for 3-criteria optimization results. 
 
Larsen-Mueller diagram (Fig. 5) has PSI on the vertical axis and the following expression on the 
horizontal axis (Temperature in Rankine degrees) * log(HOURS + 20). Here, logarithm is with the basis 
10, while temperature is in Rankine = temperature in Fahrenheit + 460. 
 
 
5.2. Problems No.2 
This part presents results of solution of five additional two-objectives problems in which PSI and HOURS 
were regarded as simultaneous objectives, and different constraints were placed on temperature: 

•  Problem 2. - 1600T ≥ , number of Pareto optimal solutions is 20. 
•  Problem 3. - 1800T ≥ , number of Pareto optimal solutions is 20. 
•  Problem 4. - 1900T ≥ , number of Pareto optimal solutions is 20. 
•  Problem 5. - 2000T ≥ , number of Pareto optimal solutions is 15. 
•  Problem 6. - 2050T ≥ , number of Pareto optimal solutions is 10. 

Results of solution of these problems are contained in the file task2-6.xls. Some of the graphical results 
are presented in Figs. 6-10.  
Figure 6 presents obtained sets of Pareto optimal solutions in objectives space. It can be seen that 
maximum achievable values of PSI and HOURS, and possibilities of compromise between these 
parameters largely depend on temperature. For instance, the increase of minimum temperature from 1600 
F to 1900 F leads to the decrease of attainable PSI by more than 50 percent. At the same time, limiting 
value of HOURS will not alter with the change of temperature.  
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Fig. 6. Sets of Pareto optimal solutions of five problems with 2-objectives. 

 
The decrease of the number of simultaneous optimization objectives (transition from three- to two-
objectives problem with constraints) leads to the decrease of the number of additional experiments 
needed, at the expense of both decreasing the number of Pareto optimal points and decreasing the ranges 
of chemical compositions.  
 
Three-dimensional plots (Pareto surfaces) where the three coordinates are PSI, TEMP, and HOURS are 
given in Figures 7 and 8. Notice that since the range of Pareto-optimal points distribution is not a square, 
the quality of the surfaces is somewhat reduced: 
 
Larsen-Mueller diagram for this set of cases (2-objective optimization for five temperatures) is shown in 
Figure 9. 
 
We also calculated sensitivity derivatives at 7 Pareto-optimal points. These derivatives are in the 
“derivatives.xls” file. But we think, that accuracy of these evaluations is very low.  
 
Figs. 10-13 show ranges of percentages of different elements for initial set of experimental data, and for 
results of solution of six optimization problems. It is noteworthy that a competent analysis of results 
obtained can allow the specialist to soundly choose chemical compositions for which the experiment is 
necessary, from the viewpoint of achieving desirable values of optimization objectives and building a 
more accurate response surface.  
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Fig. 7. Non-cumulative plots showing T=2050, T=2000, T=1900, T=1800, T=1600. 
 

 
 
 
Fig. 8. Non-cumulative plots showing T=2050, T=2000, T=1900, T=1800, T=1600. 
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Fig. 9. Larsen-Mueller diagrams for five 2-criteria optimization problems results. 
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Fig. 10. Boundaries of variable parameters for sets of Pareto optimal solutions. 
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Fig. 11. Boundaries of variable parameters for sets of Pareto optimal solutions. 
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Fig. 12. Boundaries of variable parameters for sets of Pareto optimal solutions. 
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Fig. 13. Boundaries of variable parameters for sets of Pareto optimal solutions. 
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OPTIMIZATION RESULTS FOR THE CASES WITH 9 DESIGN VARIABLES 
 
We then repeated the three-objectives optimization run in which we used only the following 9 chemical 
elements as independent variables:  
 
C, Cr, Ni, Mn, Si, Mo, Cb, W, Ti.  
 
We have followed the same steps during the optimization as when solving the problem with 17 variables. 
But, in this case there are differences: 
 
1) The variables’ ranges were changed.  
In these tables you can see the previous ranges and the current ranges. 

 
Table 1. Ranges of variation of independent variables (problem with 17 variables) 

   C   S   P   Cr   Ni   Mn   Si   Cu   Mo  
min 0.063 0.001 0.009 17.500 19.300 0.585 0.074 0.016 0.000 
max 0.539 0.014 0.031 39.800 51.600 1.670 2.150 0.165 0.132 

          
   Pb   Co   Cb   W   Sn   Al   Zn   Ti   

min 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000  
max 0.006 0.319 1.390 0.484 0.007 0.075 0.015 0.198  

 
Table 2. Ranges of variation of independent variables (problem with 9 variables) 

   C   Cr   Ni   Mn   Si   Mo   Cb   W   Ti  
min 0.00 17.50 25.00 0.00 0.00 0.00 0.00 0.00 0.00 
max 0.60 30.00 35.00 2.00 2.00 2.00 3.00 2.00 2.00 

 
 
2) The accuracy of response surfaces deteriorates. 
The main reason of accuracy deterioration is that while decreasing the number of variables for the same 
experimental data set, we added the additional noise. For example, in the file "DISTAN.XLS" you can 
find five pairs of points that are very close in variable space, but have a drastically different values of 
objectives. 
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3-criteria optimization using 9 design variables (chemical species). 
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Fig.1. Distribution of points in objectives space using 9 design variables (chemical species). 
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Fig.2. Interdependence of optimization objectives for Pareto set using 9 design variables  
(chemical species). 
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Fig.3. Pareto surfaces using 9 design variables (chemical species). 

 
 
 

2-objectives optimization using 9 design variables (tasks N2,…,N6). 
Analysis of the 3-criteria optimization results shows that there are no solutions with temperature less or 
equal 1600F. Because of this, we changed the value of a constraint for the task N2. Constraint 1600T ≥  
was replaced with 1700T ≥ . 
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Fig.4. Pareto-optimal sets for five different (temperature) constraints using 9 design variables. 
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Fig. 5. Larsen-Mueller diagrams for 3-criteria optimization problems using 9 design variables. 
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Fig. 6. Larsen-Mueller diagrams for five 2-criteria optimization problems results using 9 design variables. 
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Fig. 7. Boundaries of variable parameters for sets of Pareto optimal solutions with 9 design variables. 



 

 

 
 
 
 

21

0 0.4 0.8 1.2 1.6 2
Si,%

0

2

4

6

0 0.04 0.08 0.12 0.16 0.2
Mo,%

0

2

4

6

0 1 2 3
Cb,%

0

2

4

6

0 0.1 0.2 0.3 0.4 0.5
W,%

0

2

4

6

0 - EXPERIMENTAL DATA RANGE

1 - 3-CRITERIA OPTIMIZATION

2 - T=1700

3 - T=1800

4 - T=1900

5 - T=2000

6 - T=2050
 

 
Fig. 8. Boundaries of variable parameters for sets of Pareto optimal solutions with 9 design variables. 
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Fig. 9. Boundaries of variable parameters for sets of Pareto optimal solutions with 9 design variables. 
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OPTIMIZATION RESULTS FOR THE CASES WITH 8 DESIGN VARIABLES 
 
 
We then repeated this optimization run (three objectives) in which we used only 9 chemical elements as 
independent variables:  
 
C, Cr, Ni, Mn, Si, Mo, Cb, W 
 
Thus, Titanium was deleted from the previous case with 9 variables.   
We have followed the same steps during the optimization as when solving the problem with 17 variables. 
But, in this case there are differences: 
 
1) The variables’ ranges were changed.  
In these tables you can see the previous ranges and the current ranges. 

 
Table 1. Ranges of variation of independent variables (problem with 17 variables) 

   C   S   P   Cr   Ni   Mn   Si   Cu   Mo  
min 0.063 0.001 0.009 17.500 19.300 0.585 0.074 0.016 0.000 
max 0.539 0.014 0.031 39.800 51.600 1.670 2.150 0.165 0.132 

          
   Pb   Co   Cb   W   Sn   Al   Zn   Ti   

min 0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.000  
max 0.006 0.319 1.390 0.484 0.007 0.075 0.015 0.198  

 
Table 2. Ranges of variation of independent variables (problem with 8 vars.) 
   C   Cr   Ni   Mn   Si   Mo   Cb   W  

min 0.00 17.50 25.00 0.00 0.00 0.00 0.00 0.00 
max 0.60 30.00 35.00 2.00 2.00 2.00 3.00 2.00 

 
2) The accuracy of the response surfaces decreases. 
The main reason of accuracy deterioration is that while decreasing the number of variables for the same 
experimental data set, we added the additional noise.  
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3-criteria optimization. 
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Fig. 1. Distribution of points in the objectives space using 8 design variables (chemical species). 
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Fig. 2. Interdependence of optimization objectives for Pareto set using 8 design variables  
(chemical species). 
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Fig. 3. Three-dimensional views of Pareto surfaces using 8 design variables (chemical species). 
 
 

2-objectives optimization (tasks N2,…,N5) using 8 design variables (chemical species) 
Analysis of the 3-criteria optimization results shows that there are no solutions with temperature less or 
equal 1600F. Because of this, we changed the value of constraint for the task N2. Constraint 1600T ≥  
was replaced with 1700T ≥ . Moreover, the constraint with 2050T ≥  has no feasible solutions in 
these test cases. 
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Fig.4. Pareto-optimal sets using 8 design variables (chemical species). 
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Fig. 5. Larsen-Mueller diagrams for 3-criteria optimization problems results using 8 design variables 
(chemical species). 
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Fig. 6. Larsen-Mueller diagrams for 2-criteria optimization problems results using 8 design variables 
(chemical species). 
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Fig. 7. Input data set and optimized ranges of chemical species using 8 design variables  

(chemical species). 
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Fig. 8. Input data set and optimized ranges of chemical species using 8 design variables  
(chemical species). 




